3,298 research outputs found

    Fault-tolerant quantum computation with high threshold in two dimensions

    Get PDF
    We present a scheme of fault-tolerant quantum computation for a local architecture in two spatial dimensions. The error threshold is 0.75% for each source in an error model with preparation, gate, storage and measurement errors.Comment: 4 pages, 4 figures; v2: A single 2D layer of qubits (simple square lattice) with nearest-neighbor translation-invariant Ising interaction suffices. Slightly improved threshol

    Error tolerance and tradeoffs in loss- and failure-tolerant quantum computing schemes

    Get PDF
    Qubit loss and gate failure are significant problems for the development of scalable quantum computing. Recently, various schemes have been proposed for tolerating qubit loss and gate failure. These include schemes based on cluster and parity states. We show that by designing such schemes specifically to tolerate these error types we cause an exponential blowout in depolarizing noise. We discuss several examples and propose techniques for minimizing this problem. In general, this introduces a tradeoff with other undesirable effects. In some cases this is physical resource requirements, while in others it is noise rates

    Entanglement and the Power of One Qubit

    Full text link
    The "Power of One Qubit" refers to a computational model that has access to only one pure bit of quantum information, along with n qubits in the totally mixed state. This model, though not as powerful as a pure-state quantum computer, is capable of performing some computational tasks exponentially faster than any known classical algorithm. One such task is to estimate with fixed accuracy the normalized trace of a unitary operator that can be implemented efficiently in a quantum circuit. We show that circuits of this type generally lead to entangled states, and we investigate the amount of entanglement possible in such circuits, as measured by the multiplicative negativity. We show that the multiplicative negativity is bounded by a constant, independent of n, for all bipartite divisions of the n+1 qubits, and so becomes, when n is large, a vanishingly small fraction of the maximum possible multiplicative negativity for roughly equal divisions. This suggests that the global nature of entanglement is a more important resource for quantum computation than the magnitude of the entanglement.Comment: 22 pages, 4 figure

    A relational quantum computer using only two-qubit total spin measurement and an initial supply of highly mixed single qubit states

    Full text link
    We prove that universal quantum computation is possible using only (i) the physically natural measurement on two qubits which distinguishes the singlet from the triplet subspace, and (ii) qubits prepared in almost any three different (potentially highly mixed) states. In some sense this measurement is a `more universal' dynamical element than a universal 2-qubit unitary gate, since the latter must be supplemented by measurement. Because of the rotational invariance of the measurement used, our scheme is robust to collective decoherence in a manner very different to previous proposals - in effect it is only ever sensitive to the relational properties of the qubits.Comment: TR apologises for yet again finding a coauthor with a ridiculous middle name [12

    Quantum hashing with the icosahedral group

    Full text link
    We study an efficient algorithm to hash any single qubit gate (or unitary matrix) into a braid of Fibonacci anyons represented by a product of icosahedral group elements. By representing the group elements by braid segments of different lengths, we introduce a series of pseudo-groups. Joining these braid segments in a renormalization group fashion, we obtain a Gaussian unitary ensemble of random-matrix representations of braids. With braids of length O[log(1/epsilon)], we can approximate all SU(2) matrices to an average error epsilon with a cost of O[log(1/epsilon)] in time. The algorithm is applicable to generic quantum compiling.Comment: 5 pages, 4 figures; revised version, to appear in Phys. Rev. Lett

    Resource Requirements for Fault-Tolerant Quantum Simulation: The Transverse Ising Model Ground State

    Full text link
    We estimate the resource requirements, the total number of physical qubits and computational time, required to compute the ground state energy of a 1-D quantum Transverse Ising Model (TIM) of N spin-1/2 particles, as a function of the system size and the numerical precision. This estimate is based on analyzing the impact of fault-tolerant quantum error correction in the context of the Quantum Logic Array (QLA) architecture. Our results show that due to the exponential scaling of the computational time with the desired precision of the energy, significant amount of error correciton is required to implement the TIM problem. Comparison of our results to the resource requirements for a fault-tolerant implementation of Shor's quantum factoring algorithm reveals that the required logical qubit reliability is similar for both the TIM problem and the factoring problem.Comment: 19 pages, 8 figure

    Topological fault-tolerance in cluster state quantum computation

    Get PDF
    We describe a fault-tolerant version of the one-way quantum computer using a cluster state in three spatial dimensions. Topologically protected quantum gates are realized by choosing appropriate boundary conditions on the cluster. We provide equivalence transformations for these boundary conditions that can be used to simplify fault-tolerant circuits and to derive circuit identities in a topological manner. The spatial dimensionality of the scheme can be reduced to two by converting one spatial axis of the cluster into time. The error threshold is 0.75% for each source in an error model with preparation, gate, storage and measurement errors. The operational overhead is poly-logarithmic in the circuit size.Comment: 20 pages, 12 figure

    Quantum dynamics as a physical resource

    Get PDF
    How useful is a quantum dynamical operation for quantum information processing? Motivated by this question we investigate several strength measures quantifying the resources intrinsic to a quantum operation. We develop a general theory of such strength measures, based on axiomatic considerations independent of state-based resources. The power of this theory is demonstrated with applications to quantum communication complexity, quantum computational complexity, and entanglement generation by unitary operations.Comment: 19 pages, shortened by 3 pages, mainly cosmetic change

    Simulating chemistry efficiently on fault-tolerant quantum computers

    Get PDF
    Quantum computers can in principle simulate quantum physics exponentially faster than their classical counterparts, but some technical hurdles remain. Here we consider methods to make proposed chemical simulation algorithms computationally fast on fault-tolerant quantum computers in the circuit model. Fault tolerance constrains the choice of available gates, so that arbitrary gates required for a simulation algorithm must be constructed from sequences of fundamental operations. We examine techniques for constructing arbitrary gates which perform substantially faster than circuits based on the conventional Solovay-Kitaev algorithm [C.M. Dawson and M.A. Nielsen, \emph{Quantum Inf. Comput.}, \textbf{6}:81, 2006]. For a given approximation error ϵ\epsilon, arbitrary single-qubit gates can be produced fault-tolerantly and using a limited set of gates in time which is O(logϵ)O(\log \epsilon) or O(loglogϵ)O(\log \log \epsilon); with sufficient parallel preparation of ancillas, constant average depth is possible using a method we call programmable ancilla rotations. Moreover, we construct and analyze efficient implementations of first- and second-quantized simulation algorithms using the fault-tolerant arbitrary gates and other techniques, such as implementing various subroutines in constant time. A specific example we analyze is the ground-state energy calculation for Lithium hydride.Comment: 33 pages, 18 figure

    Review article: Linear optical quantum computing

    Get PDF
    Linear optics with photon counting is a prominent candidate for practical quantum computing. The protocol by Knill, Laflamme, and Milburn [Nature 409, 46 (2001)] explicitly demonstrates that efficient scalable quantum computing with single photons, linear optical elements, and projective measurements is possible. Subsequently, several improvements on this protocol have started to bridge the gap between theoretical scalability and practical implementation. We review the original theory and its improvements, and we give a few examples of experimental two-qubit gates. We discuss the use of realistic components, the errors they induce in the computation, and how these errors can be corrected.Comment: 41 pages, 37 figures, many small changes, added references, and improved discussion on error correction and fault toleranc
    corecore